Monosynaptic connexions between wing stretch receptors and flight motoneurones of the locust.

نویسنده

  • M Burrows
چکیده

1. The connexions between stretch receptors of the wings and motoneurones innervating flight muscles have been studied anatomically and physiologically. 2. Filling with cobaltous chloride shows that the single neurone of a forewing stretch receptor has a complex pattern of branches within the mesothoracic ganglion and branches which extend into the pro- and meta-thoracic ganglia. The single neurone of a hindwing stretch receptor has extensive branches in the metathoracic ganglion and branches in themesothoracic ganglion. The branches of both receptors are confined to the ipsilateral halves of the ganglia. 3. A stretch receptor gives information about the velocity and extent of elevation of a wing. 4. Each spike of a forewing stretch receptor casuses an EPSP in ipsilateral mesothoracic depressor motoneurones and an IPSP in elevators. The connexions are thought to be monosynaptic for the following reasons. The EPSPs in the first basalar (depressor) motoneurone follow each spike of the stretch receptor at a frequency of 125 Hz and with a constant latency of about 1 msec. In a Ringer solution containing 20 mM-Mg2+ the amplitude EPSP declines gradually. The IPSP'S upon elevators have similar properties but occur with a latency of 4-6 msec. 5. The connexions therefore comprise a monosynaptic negative feed-back loop; elevation of the wing excites the stretch receptor which then inhibits the elevator motoneurones and excites the depressors. 6. A hindwing stretch receptor synapses upon metathoracic flight motoneurones in the same way, causing EPSPs in depressor and IPSPs in elevator motoneurones. 7. No connexions of either fore- or hindwing stretch receptors have been found with contralateral flight motoneurones. 8. Interganglionic connexions are made by both receptors. For example, both fore- and hindwing stretch receptors cause EPSPs upon the meso- and metathoracic first basalar motoneurones. 9. Stimulation of the axon of a stretch receptor with groups of three stimuli repeated every 50-100 msec thus simulating the pattern which it shows during flight, causes subthreshold waves of depolarization in depressor motoneurones. When summed with an unpatterned input, the stretch receptor is able to influence the production of spikes in motoneurones on each cycle. During flight, it is expected that the stretch receptor will influence the time at which a motoneurone will spike and hence have an effect on the amplitude of the upstroke and upon the phase relationship between spikes of motoneurones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co-ordinating interneurones of the locust which convey two patterns of motor commands: their connexions with flight motoneurones.

1. Some flight motoneurones receive two superimposed rhythms of depolarizing synaptic potentials when the locust is not flying; a slow rhythm which is invariably linked to the expiratory phase of ventilation, and a fast rhythm with a period of about 50 ms which is similar to the wingbeat period in flight. 2. By recording simultaneously from groups of motoneurones, the synaptic potentials which ...

متن کامل

Co-ordinating interneurones of the locust which convey two patterns of motor commands: their connexions with ventilatory motoneurones.

1. The interneurones which make widespread connexions with flight motoneurones also synapse upon ventilatory motoneurones so that in all 50 motoneurones receive synapses. They influence three aspects of ventilation; (a) the closing and opening movements of the thoracic spiracles, (b) some aspects of abdominal pumping movements and (c) the recruitment of some motoneurones controlling head pumpin...

متن کامل

Adaptive Modifications in the Flight System of the Locust after the Removal of Wing Proprioceptors

Previous investigations on the flight system of the locust have found that removal of the wing tegulae in mature locusts (Locusta migratoria) results in an immediate change in the flight motor pattern: the wingbeat frequency (WBF) decreases, the interval between the activity of the depressor and the elevator muscles (the D-E interval) increases, and the phase of the elevator activity in the dep...

متن کامل

Phase-dependent influences of wing stretch receptors on flight rhythm in the locust.

1. In restrained locusts we have reexamined the effects on the flight rhythm of stimulating wing stretch receptors. Contrary to earlier reports, we have found a strong phasedependent influence. Single stimulus trains delivered close to the onset of depressor motor activity reset the flight rhythm. When presented approximately midway between depressor bursts, they had no effect. 2. Stretch-recep...

متن کامل

Influence of Input from the Forewtng Stretch Receptors on Motoneurones in Flying Locusts

1. Previous studies on the forewing stretch receptors (FSRs) of locusts have suggested that feedback from these receptors during flight contributes to the excitation of depressor motoneurones and reduces the duration of depolarizations in elevator motoneurones. We have investigated these proposals by measuring the timing of FSR activity relative to depressor activity and by examining the effect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 62 1  شماره 

صفحات  -

تاریخ انتشار 1975